
Heterogeneous Self-Assembling based on
Constraint Satisfaction Problem

Serge Kernbach

Abstract This paper is devoted to self-assembling of heterogeneous robot mod-
ules into specific topological configurations with desired kinematic properties. The
approach utilizes a constrained nature of self-assemblingand involves constraint
satisfaction and constraint optimization techniques for finding optimal connections
between modules. Scalability, locality and noise of sensorinformation as well as
environmental dependability are addressed. This approachis implemented in real
reconfigurable robots and in simulation.

1 Introduction

Reconfigurable robotics is a well-established research field, which involves such ar-
eas as evolutionary computation, bio-inspired and developmental systems as well as
topology or non-linear dynamics [1]. This field is characterized by multiple chal-
lenges related to platform development, complex kinematiccalculations, finding
optimal morphology and functionality for heterogeneous modules, distributed self-
assembling and other problems [2].

State of the art solutions for morphological problems referto evolutionary algo-
rithms for evolving structures and functionality in the off-line and off-board mode
(i.e. in simulation on external computer) [3]. The task for on-line and on-board
mode is rather to select and to adapt one of pre-evolved (or pre-developed) solutions
instead of evolving the required topology and functionality anew. Combination of
off-line pre-development and on-line selection/adaptation of structural solutions has
several advantages, such as on-demand availability of different kinematic, control-
ling, homeostasis, energetic and other mechanisms, safe and fast adaptation in real
environments. Using on-line and off-line approaches for self-assembling has been

Serge Kernbach
University of Stuttgart, Germany, e-mail: Serge.Kernbach@ipvs.uni-stuttgart.de

1

2 Serge Kernbach

already considered in [4]. This paper extends that idea and introduces the constraint-
based approach for topological problems.

The self-assembling structures are limited by multiple constraints, e.g. useful
kinematics, specific connectivities, required degrees of freedom, scalability proper-
ties and other constraints. It is natural to formulate distributed self-assembling of
reconfigurable robot modules in the form of Constraint Satisfaction Problem (CSP)
and Constraint Optimization Problem (COP). Due to connectivity and functional
constraints, this approach is very useful for modules with different geometry and
functionality, i.e. for heterogeneous reconfigurable robots. It allows addressing chal-
lenges of noisy and incompetence sensor information and optimality of topologies
based on the selected cost function. Since linear optimization is very fast, this ap-
proach can be run on-board and on-line. Moreover, optimization can be considered
as a mean of synchronization between different modules (i.e. two independent op-
timizers receive the same results when they use the same initial data). This allows
using self-organizing mechanisms for a structural regulation.

The rest of the paper is organized in the following way. Sec. 2introduces
a connectivity-based description of topologies and integration of kinematic con-
straints into self-assembling. Sec. 3 formulates CSP/COP,cost function and scal-
ability approaches. Sec. 4 describes implementation and performed experiments,
whereas Sec. 5 concludes this work.

2 Description of Topologies for Self-Assembling

Example of heterogeneous reconfigurable modules is shown inFig. 1. All these

scout

backbone

active wheel

B

B

S

S

S

A

1

2

1

2

2

Fig. 1 Example of heterogeneous robot modules (prototypes) from the SYM-
BRION/REPLICATOR projects. Individual degree of freedom are shown, letters denote
corresponding docking elements, see Table 2.

modules have the same docking mechanism and can dock to each other. Modules
differ in a number of docking elements, in a provided functionality (degree of free-
dom of individual modules) and geometries. Since assembling and disassembling

Heterogeneous Self-Assembling based on Constraint Satisfaction Problem 3

are performed on a 2D plane, most topologies of artificial organisms generally be-
long to 2D grid-based reconfigurable systems. The matrix-based (and correspond-
ingly a graph-based) representation of such topologies is common in reconfigurable
robotics, see e.g. [5] or [6]. Such a representation for the model of a simple topology
is shown in Fig. 2. Here several high- and low- dimensional representations [4],[7]
are distinguished.

R
R

R
R

R

1

2

5

4

3

(a)

R

R

R

R

R

R

R R R R
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X X

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0 0

0

0

0

0

0

0

0 0

0

X X XX X X XX X X XX X X X
1i

j

1

2

3

4

5

2 3 4 5

1

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

4

8

12

16

20

2 3 4 5 9 13 178 12 16 206 10 14 187 11 15 19

(b)

R

R

R

R

R

R

R R R R

1

1

5

5

5

9

1

1

9

9

13

13

9

T

T

T

T

0

00 0

0

0

0

0

0

000

1
i

j

1

2

3

4

5

2 3 4 5

B

D Z

Z

Z

Z

Z

Z

Z

Z B

B

C

(c)

Fig. 2 (a) Model of a simple topology;(b) High-dimensional configuration matrix based on the
docking connections, see more in [4];(c) Low-dimensional configuration matrix based on the
connections between modules. Type of connection is coded based on the docking connections
from (b).

The matrix-based description of topologies has several disadvantages: it requires
a large memory for on-board storage and processing; it introduces IDs of place-
holders (descriptors of robots in the configuration matrix), and it restricts topologies
only to those, which are described by this matrix. There are also several proposals
to improve this description, e.g. [8], most of them utilize symbolic, operational and
topological generators. The symbolic generators use production rules: each symbol
ai means specific connectionai : xi → x j, L-systems [9] are well-known examples.
Operational generators are based on a structural decomposition into standard topolo-
gies and operation on them (e.g. topology from Fig. 2 can be decomposed into ”T”
shape withR1−R4 and extensionR5), each of them is described by its own oper-
ator, see more in [4]. Topological generators are based on properties of symmetric
and circulant matrices [10], which allows a compact analytical generation of corre-
sponding matrices, see more in [4], [11].

As mentioned, there are multiple constraints, imposed on connectivity, kinematic
properties, heterogeneity and others. Therefore it makes sense to describe a topology
also in the form of constraints. Let us consider the Fig. 3, which shows 2x segmented
cross (2x centipede or ”dog”). It can be remarked that such a topology:(1) can be
split on a combination of several so-called ”core” elements(R1−R5 andR6−R10),
the cores have a low number of elements. Decomposition on cores enables us to
reduce the dimensionality of self-assembling and to consider large topologies as a
scalability/deviation problem;(2) all elements within/between cores are connected
to each other in a specific way, i.e. each connection has a defined DoF/functionality;
(3) core elements have a specific connectivity of all components, such as 4x cross-
like, 3x triangle-like and others.

4 Serge Kernbach

R

R
R R

R
R

R

R
R

R

R

R

R

R R

2

6

7
8

9
10

13

11
12

14

15

16

3

5
4

R1

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R R R R RR RR R RR R R Ri
j 1

1

1

1

1

1

1

1

1

1

1

1

5

5

9

9

9

9

9

9

9

9

11

11

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

9

9

9

9

9

9

9

9

5

5

13

13

13

13

5

5

5

5

5

5

5

5

5

9

13

2

6

10

14

3

7

11

15

16

4

8

12

2 3 4 5 9 138 126 10 147 11 15 16

B

B

B

B

B

B

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

C

C

C

C

C

C

C

C

0

0

Fig. 3 2x-Centipede (“dog”) and its symbolic description, obtained as a combination of two ex-
tended crosses (from [4]).

Generally, the connectivity means the number of elements, connected to each of
modules. For example, the central element of the cross has the connectivity 4 (mod-
ules connected from each side). Connectivity constrains the number of connection
and can be effectively utilized in a description of topologies. Whenci is the connec-
tivity of the i-element, wherei goes from 1 ton (n is the number of robots in the
topology; in contrastN is a total number of robot), the topologyΦ can be described
asn+1 set(c1,c2, ...,cn,ct), ct is a total number of connections in the topology with
n robots. Each ofci varies between 1 and 2 for active wheel and between 1 and 4
for scout and backbone robots from Fig. 1. In general case, max. of ci is equal to the
maximal connectivity of the platform. Allci are re-ordered fromcmax to cmin so that
the first elementc is always that one, which has a maximal degree of connectivity.
The topologyΦ can be described as

Φ = {cmax,cmax−1...,cmin+1,cmin,ct},ci ∈ {1,2,3,4}. (1)

Several examples ofΦ for n = 5−7 are shown in Table 1.
The description, defined by (1) has different topological properties, whose anal-

ysis oversteps boundaries of this work. Generally, there are basis topologies, which
are unique, provided the topology is coherent (coherent topology = no disconnected
nodes). For example, the first row in Table 1 demonstrates disconnected topologies.
To eliminate disconnected topologies, a coherency constraint has to be integrated
into CSP/COP solver. Basic topologies can be perturbed by one or several modules,
this increasesn andct . Such perturbed topologies are not unique. One of possible
ways to deal with perturbed topologies is indicated in [4], in this work we limit
ourselves only to basic (non-perturbed) topologies.

Integration of Kinematic Constraints into Self-assembling. TopologyΦ de-
fined by (1) creates connections, which are invariant to robot’s IDs. To integrate
kinematics into topology,Φ should be supplemented with a functional description:
it means to involve the desired degrees of freedomϕi for a particular connection.
The degrees of freedom between robotsRk : Rp depends on bothRk andRp, i.e. we
can encounter the situation when both are relevant, one of them is relevant and none
of them are relevant. For example, in the configuration shownin Fig. 4, the func-

Heterogeneous Self-Assembling based on Constraint Satisfaction Problem 5

Table 1 Examples of different topologies forn = 5,6,7, described through connectivity con-
straints,n is the number of robots,ci is the connectivity andct is a total comber of connections.

n ci ct Example n ci ct Example n ci ct Example

5 2,1,1,1,1 3 6 2,2,1,1,1,1 4 7 2,2,2,1,1,1,1 5

5 4,1,1,1,1 4 6 4,2,1,1,1,1 5 7 4,2,2,1,1,1,1 6

——- 6 3,3,1,1,1,1 5 7 3,3,2,1,1,1,1 6

——- ——- 7 4,3,1,1,1,1,1 6

5 3,2,1,1,1 4 6 3,2,2,1,1,1 5 7 3,2,2,2,1,1,1 6

——- 6 4,3,2,1,1,1 6 7 4,3,2,2,1,1,1 7

——- ——- 7 4,4,2,1,1,1,1 7

5 3,3,2,1,1 5 6 3,3,2,2,1,1 6 7 3,3,2,2,2,1,1 7

——- 6 4,4,2,2,1,1 7 7 4,4,2,2,2,1,1 8

——- ——- 7 4,4,3,2,1,1,1 8

5 4,2,2,1,1 5 6 4,2,2,2,1,1 6 7 4,2,2,2,2,1,1 7

5 3,2,2,2,1 5 6 3,2,2,2,2,1 6 7 3,2,2,2,2,2,1 7
5 2,2,2,1,1 4 6 2,2,2,2,1,1 5 7 2,2,2,2,2,1,1 6

5 2,2,2,2,2 5 6 2,2,2,2,2,2 6 7 2,2,2,2,2,2,2 7

Table 2 Combination of different types of connections betweenRk : Rp, x means ”any type of
connection”, A - active wheel, S - scout, B - backbone robots, indexes point to corresponding DoF.

Number(ϕ) Type Number(ϕ) Type Number(ϕ) Type Number(ϕ) Type
0 x:x 5 B2 : x 10 A : x 15 S1 : S1
1 B1 : B1 6 B1 : S1 11 A : B1 16 S1 : S2
2 B1 : B2 7 B1 : S2 12 A : B2 17 S2 : S2
3 B2 : B2 8 B2 : S1 13 A : S1 18 S1 : x
4 B1 : x 9 B2 : S2 14 A : S2 19 S2 : x

tional requirement imposed on all connections is ”Ax : x”, where x means ”any”.
Table 2 introducesϕi for connections, shown in Fig. 1. Since each node has max.
four connections (i.e. in general case differentϕi), the functional topology should
include all of them. We use the agreement, that when only oneϕ is specified for a
connectivity, it meansϕi = ϕ . Now we can generalizeΦ from (1):

Φ = ((cmax : {ϕ}max),(cmax−1 : {ϕ}max−1), ...,(cmin : {ϕ}min),ct) (2)

6 Serge Kernbach

Fig. 4 Simple organism, defined by topol-
ogy Φ = ((2 : 10), (1 : 0), (1 : 0),2), see ex-
planation in text.

To give an example of this descrip-
tion, we consider the simple organism from
Fig. 4. It has three robotsn = 3, the max-
imal connectivity iscmax = 2 (two mod-
ules are connected to the active wheel), all
other connectivities are 1 (one mode from
each side), the total number of connections
ct = 2, i.e.Φ = (2,1,1,2). Functionality is
described asA : x (10 from the Table 2)
for the maximal connectivity (active wheel
connected from each side toany module)
and ”x:x”, ”x:x” (i.e. 0 from the Table 2)
for other connectivities (any module can
connect to the active wheel), i.e.Φ = ((2 :
10),(1 : 0),(1 : 0),2). This description is unique for each topology and kinematics,
taking into account other constraints, mentioned in the previous section. Kinematic
constraints are involved into calculation of the cost function (4), i.e. there are penal-
ties, when a robot does not satisfy the functional requirements.

3 Formulation of CSP/COP, cost functions and scalability issues

The constraint-based approach assumes, that basic topologies with corresponding
kinematics are evolved or designed off-board/off-line. All of them, as well as cor-
responding control procedures are stored on-board. Robotsduring self-assembling
decide which of these topologies is most optimal one to the given environmental
conditions and self-assemble into scalable versions of this configuration. There are
two challenges here. Firstly, the decision process is distributed and based only on
local sensor data, i.e. it should be stable to noisy and incompetence sensor informa-
tion. Secondly, only optimal topology and scalability approach should be selected
(which optimizes a cost function), i.e. distributed optimization and decision making
processes should be integrated. As mentioned, these challenges are approached in
the CSP/COP way.

CSP is a useful way of solving combinatorial problems, when constraints can
essentially limit the search space, see e.g. [12]. There areseveral CSP solvers, one of
them is based on a linear programming (LP). LP is formulated to optimize the linear
objective functionΘ = sT x, wheres is the vector of costs andx = (x1,x2, ...xm)

T is
a vector of variables, which are bounded by 0 and 1. LP is constrained as follows

Ax = b, xi ∈ {0, ...,1}, (3)

whereA is a matrix andb is a vector of numerical coefficients, which formm linear
equations (in general case inequalities). In this form it isknown as integer program.
Finally, by solving (3), all variablesxi take ”0” or ”1” so that to optimizesT x.

First of all, we need to defined the objective functionΘ , which is specified by
si. Whenn robots are involved into some topologyΦ, the variablesx represent all

Heterogeneous Self-Assembling based on Constraint Satisfaction Problem 7

possible bilateral connections between there robots. The vector of variables hasm
components:m = n!

(n−2)!2! . There are several differentΘ , in the experiments we used

si = fi(Rk : Rp) = D(Rk : Rp)+F(Rk : Rp),k, p = 1, ...,n;k 6= p, i = 1, ...,m (4)

whereD(Rk : Rp) is a distance between neighborRk andRp, F(Rk : Rp) satisfaction
of functional constraints (0 when satisfied or> maxD(Rk : Rp) not satisfied); all of
them are estimated only to locally visible robotsRk andRp.

Now A andb in (3) have to be defined; they reflect the connectivity constraints
of the corresponding topology. As mentioned, allci are disconnected from robots,
i.e. we have to map the set ofci to all possible combinations between these robots

(cmax,cmax−1, ...,cmin)→ Permutation(R1,R2, ...,Rn). (5)

Since the number of permutations is equal ton!, computational power of the most
of microprocessors allows computation forn below 10 closely to real time. This is
more then enough for a large diversity of cores (see Table 1),complex topologies are
created through scalability. Since variablexi points to connections between robots,
defined by (5), the vectorb is equal to the set ofci in the order fromcmax to cmin and
the matrixA creates corresponding placeholders (see example below).

To exemplify the LP solver of CSP, we assume thatN = 5 robots(R1,R2...R5)
are positioned on the surface. The costs of connections between robots are written
into the vectors

s = (R1 : R2,R1 : R3,R1 : R4,R1 : R5,R2 : R3,R2 : R4,R2 : R5,R3 : R4,R3 : R5,R4 : R5)
T

whereR1 : R2 means a placeholder for the corresponding functionfi(Rp,Rk) defined
by (4), forn = 5,m = 10.

Fig. 5 A andb for the introduced example.

In a particular example, we
setc=(35,40,80,36,41,42,31,32,55,
60). Thus, m variables xi cor-
respond to costs of connections
Rk : Rp, wherek, p = 1, ...,n and
k 6= p. We consider the topology,
defined by the connectivityC =
(3,2,1,1,1,4). Linear constraints
for the mentioned case are de-
fined as shown in Fig. 5. Here
cmax − cmin define connectivity of theR1 − R5 andct defines the total number
of connections in this group. The definedA, b and c allow us to find a minimal
cost for connections betweenR1−R5 only for one case, namely when the connec-
tivity vector (cmax,cmax−1, ...,cmin) is assigned to the vector of robots in this order
(R1,R2,R3,R4,R5), i.e. the first robot has a maximal connectivity. We have to as-
sume that all robots fromR1 to R5 can havecmac and all other connectivities. In
other words, the connectivity vectorC should be assigned to each of the permuta-
tion setsR1,R2, ...,Rn (for n = 5 there are 120 permutations ofR1, ...,R5). For the

8 Serge Kernbach

mentioned example with 5 robots, the minimal costsT x = 139 is achieved for the
connections(R2 : R3,R2 : R1,R2 : R5,R3 : R4), i.e.x = (1,0,0,0,1,0,1,1,0,0).

COP. The CSP solver deliversm solutions, which satisfy connectivity constraints
and are optimal for the cost functionsT x for each set from (5). However, not all of
them satisfy the set of constraints (e.g. coherency constraints). COP solver goes
through allm solutions and eliminates those which do not satisfy the restof con-
straints. Finally, the solution with a minimal cost is delivered as output.

Scalability. Scalability addresses the relation betweenn andN (n is the number
of robots in the topology,N is a common number of robot). There are different
possibilities whenN is increasing:

(1) for N = xn,x= 1,2,3, ..., the topology withn robots can be replicatedx times.
Each of these new topologies is an independent structure. This is the simplest form
of scalability, which can be denoted as the behavioral scalability.

(2) x topologies from the previous case can joint into one common structure.
This is typically segmented body construction, wheren robots within one segment
are repeatedx times. This is the structural scalability.

(3) the robots fromN mod n > 0 cannot create a new topology. These robots are
still useful for already existing topology, e.g. energy reserve, so these robots can
perturb the topologyΦ, this is the perturbational scalability.

(4) finally, N mod n> 0 robots are not aggregating with any other structures, they
build a ”reserve” for e.g. self-repairing.

For each topology, corresponding scalability class has to be defined. For this
work we use the scalability class (1) and (4), i.e. there are (int)N/n cores, remaining
robots are not connected. Algorithm for CSP/COP solver is shown in Fig. 6. The

select next mapping

finished

Recalculate Constraints,
remove non-connected
permutations

solve CSP by LP solver,
store costs and solution

COP (remove solutions, which do
not satisfy remaining constraints)

COP
(find minimal cost of)

(C , C ,..., C) Permutation (R , R ,..., R)max 1 2 nminmax-1

s xT

Fig. 6 Algorithm for CSP/COP solver.

core of this algorithm is the LP solver, which cyclically takes one permutation from
the set and delivers optimal connections for the given connectivity. All these solu-
tions are stored and later used by COP solves to eliminate non-consisted solutions
and to find the minimal one.

4 Implementation and Experiments

For implementation of LP solver for CSP, we used lpsolve 5.5 routine (see lp-
solve.sourceforge.net) of Mixed Integer Linear Programming solver, which is under
the GNU lesser general public license and is available in several programming lan-
guages (C++ version is used for real robots, Java version is used for simulation).

Heterogeneous Self-Assembling based on Constraint Satisfaction Problem 9

Real robots use Blackfin double core as the main CPU (in each module) with 64 Mb
SDRAM on board. The implementation on the real platform (seeFig. 7(a)) was in-
tended to test computational properties as well as to estimate the level of distortion
in creating the objective functionΘ . Since currently there are not enough robots for
testing scalability, several experiments are performed insimulation, which is done
in AnyLogic (with Java version of lpsolve and the same algorithm). Tests are per-
formed with two topologies:Φ1=((3:4,5),(2:4),(1:4),(1:4),(1:4),4), which is shown
in Fig. 2 andΦ2=((2:4),(2:4),(2:4),(1:4),(1:4),4) (a snake of 5 robots).

(a) (b)

Fig. 7 (a) Prototype of the reconfigurable module used for testing the objective functionΘ ; (b)
Sketch of behavioral algorithm for self-assembling (autonomy cycle).

The behavioral algorithm is sketched in Fig. 7(b). First of all, a robot collects
data about availability of other robots and their functionality. This is done through
ZigBee communication channel and allows definingN and functional constraints
ϕi. For temporal identification of robots, ZigBee identification code is used. The
ZigBee channel does not provide distances and orientation;this is achieved through
sensor-fusion level of local IR-based proximity sensors with color sensor and vision-
based data. Collision avoidance uses 8-directional force-based model with a global
gradient, docking is performed when robot has corresponding position and angle
(i.e. specific routines control docking approach).

0% noise

Iterations of autonomy cycle

50% noise

100% noise

N
 o

f
d

if
fe

re
n

t
C

S
P

/C
O

P
s
o

lu
ti
o

n
s

Fig. 8 Number of different CSP/COP solu-
tions in relation to the level of sensor noise.

Synchronous and asynchronous up-
dates. All robots start their CSP/COP
solvers independently from each other.
Since original cost vector is the same in all
robots, all initial solutions are consistent.
Each 10 iterations of the autonomy cycle,
a robot updates the cost vector and starts
the CSP/COP solver again. This new so-
lution can deliver a new partner for dock-
ing (when such a solution is more efficient
than the original one). Fig. 8 demonstrates
the number of partner’s changes during one
self-assembling run. Since duration of one
autonomy cycle varies from robot to robot, all next solutions use cost vectors with
different time stamps. Such an asynchronous update CSP/COPdata can lead to loss
of consistency in solutions. There are several methods to keep data consistent even

10 Serge Kernbach

for asynchronous updates, for example, when one robot receive a new assigned part-
ner for docking, this triggers all robots in the group to update CSP/COP solutions.

Noise of sensor data. Non-accuracy of reflective IR sensors, out-of-focus images
from cameras, wrong identification of robots are sources of sensor noise. Overview
of different sensors and their properties is given in [2]; normally the level of noise
increases towards boundaries of perception range. To test astability of this approach,
noise was added to sensor data (asci ±max.(ci/2) for 100% of noise). Fig. 8 shows
the number of different solutions delivered by CSP/COP solver at 100%, 50% and
0% of noise. Generally, noise in sensor data does not change the self-assembling
behavior, however triggers more frequent solutions by the solver.

Self-assembling with a large perception radius. The Fig. 9 plots the sum of el-
ements in the cost vector∑i si, when a half of the whole arena is visible to robots, i.e.
a robot in the middle of arena can perceive all other robots. The common cost func-

Iterations of autonomy cycle

S
u

m
 o

f
s

o
v
e

r
a

ll
ro

b
o

ts
i

(a)
Iterations of autonomy cycle

S
u
m

 o
f
s

in

 a
ll

g
ro

u
p
s

i

(b)

Fig. 9 Assembling ofΦ1 at N = 30,n = 5, behavioral scalability is utilized (i.e. 6 groups of 5
robots). Shown are∑i si, calculated for(a) all robots in the arena;(b) each group of robots.

tion as well as particular cost functions in each group are monotonically decreased
during the self-assembling process. Fluctuation of the function can be explained by
collision avoidance behavior and by finding a final alignmentduring the docking.

Self-assembling with reduced perception radius and noisy sensor data. The
perception radius was set to 8-10 body lengths of a robot (what approximately cor-
responds to the data from camera). Robots outside the visibility radius receive a
large constant value in the cost vector and move randomly in the arena. As soon
as a robot became within the perception radius, CSP/COS solver starts anew and
recalculates the solution. Fig. 10 shows the common and particular objective func-
tions. Comparing to a large visibility radius, the self-assembling here takes almost
10 times longer. Such a long convergence time can be explained by the random mo-
tion of those robots which are outside of the perception radius and so not involved
into self-assembling. When these robots increase compactness of the group, this will
essentially improve the efficiency of the approach without making it more complex.
Fig. 11 demonstrates the objective functions for the strategy, when robots outside of
the perception radius move first to the middle of robot arena.All robots get relatively

Heterogeneous Self-Assembling based on Constraint Satisfaction Problem 11

Iterations of autonomy cycle

S
u

m
 o

f
s

o

v
e

r
a

ll
ro

b
o

ts
i

(a)
Iterations of autonomy cycle

S
u

m
 o

f
s

in
 a

ll
g

ro
u

p
s

i

(b)

Fig. 10 Self-assembling with the same parameters as in Fig. 9, perception radius is limited to
10 body length of a robot. Assembling is finished within 6000 iterations of the autonomy cycle
(calculated as a sum over all robots).

Iterations of autonomy cycle

disaggregation
of groups

S
u

m
 o

f
s

o
v
e

r
a

ll
ro

b
o

ts
i

(a)
Iterations of autonomy cycle

S
u
m

 o
f
s

in

 a
ll

g
ro

u
p
s

i

aggregation

collision
avoidance

(b)

Fig. 11 The same case as in Fig. 10, simple two steps aggregation strategy is used. Assembling is
finished within 2700 iterations of the autonomy cycle.

quick visible to each other, however this creates more stronger collision avoidance in
the groups and robots needs more time to resolve collisions problems. Despite sim-
plicity and collisions drawback of this strategy, it allowsimproving the efficiency
more than twice.

5 Conclusions

This paper describes the constraint-based self-assembling strategy, which used
CSP/COP solver with LP core. Due to connectivity and functional constraints, this
approach is very useful for modules with different geometryand functionality, i.e.
for heterogeneous reconfigurable robots. Since kinematic chains are directly in-
volved into self-assembled structures, self-assembled organisms immediately after
aggregation are ready for performing locomotive tasks.

There are several observations for this approach. First of all, the constraint-based
topological description is efficient for basic and symmetric topologies. To define

12 Serge Kernbach

perturbations and scalability, additional specificationsare necessary. This can be
done by using a generator-based approach [4] or by introducing compact explicit de-
scriptors. Secondly, in practical situations the CSP/COP solver can run only once,
when all components of the objective functionΘ are known. Possible small non-
optimality of solutions can be ignored by the reason of saving computational power.
Moreover, very restrictive formulation of a heterogeneoustopology (e.g. only with
specific modules) leads to deadlocks when such modules are not available. It is gen-
erally recommended to use ”A:x”, ”S:x” or ”B:x” kind of functional descriptions.
Finally, a combination of low-dimensional assembling cores and scalability man-
agement enables an efficient management of high-dimensional topologies; in the
demonstrated example the problem of 30 robots was efficiently solved within a few
seconds by on-board microprocessors.

Limited perception radius of robots has an essential impacton the performance
of this approach, drop of efficiency lies between 4 and 10 times. However, nether
noise nor a small perception radius stops the self-assembling. By using dedicated
algorithms for increasing compactness, the performance can be improved; this as
well as performing experiments with 30 real heterogeneous robots represents future
works.

References

1. C.-J. Chiang and G. Chirikjian, “Modular robot motion planning using similarity metrics,”
Auton. Robots, vol. 10, no. 1, pp. 91–106, 2001.

2. P. Levi and S. Kernbach, Eds.,Symbiotic Multi-Robot Organisms: Reliability, Adaptability,
Evolution. Springer Verlag, 2010.

3. S. Nolfi and D. Floreano,Evolutionary Robotics: The Biology, Intelligence, and Technology
of Self-Organizing Machines. Cambridge, MA. / London: The MIT Press, 2000.

4. S. Kernbach and O. Kernbach, “Structural self-organizedcontrol,” in Symbiotic Multi-Robot
Organisms: Reliability, Adaptability, Evolution, P. Levi and S. Kernbach, Eds. Berlin, Hei-
delberg: Springer-Verlag, 2010, pp. 306–326.

5. B. Salemi and W.-M. Shen, “Distributed behavior collaboration for self-reconfigurable
robots,” inProc. of the IEEE International Conference on Robotics and Automation (ICRA-
04), New Orleans, USA, 2004, pp. 4178–4183.

6. H. Y. K. Lau, A. W. Y. Ko, and T. L. Lau, “The design of a representation and analysis method
for modular self-reconfigurable robots,”Robot. Comput.-Integr. Manuf., vol. 24, no. 2, pp.
258–269, 2008.

7. A. Castano and P. Will, “Representing and discovering theconfiguration of CONRO robots,”
in Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA-01), vol. 4. IEEE, 2001, pp.
3503–3509.

8. A. Christensen, R.O’Grady, and M. Dorigo, “Swarmorph-script: A language for arbitrary mor-
phology generation in self-assembling robots,”Swarm Intelligence, no. 2, p. 143165, 2008.

9. N. Brener, F. Ben Amar, and P. Bidaud, “Designing modular lattice systems with chiral space
groups,”Int. J. Rob. Res., vol. 27, no. 3-4, pp. 279–297, 2008.

10. P. Davis,Circulant matrices. John Willey & Sons, 1979.
11. S. Kernbach,Structural Self-organization in Multi-Agents and Multi-Robotic Systems. Logos

Verlag, Berlin, 2008.
12. S. Kornienko, O. Kornienko, and J. Priese, “Applicationof multi-agent planning to the assign-

ment problem,”Computers in Industry, vol. 54, no. 3, pp. 273–290, 2004.

