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Summary. This work focuses on evolving purposeful collective behavior in a swarm of Jasmine
micro-robots. We investigate the stability of the on-line and on-board evolutionary approaches,
where mutation, crossover as well as fitness calculation are performed only by interacting
micro-robots without using any centralized resources. In this work it is demonstrated that the
environment-adaptive collective behavior can be obtained, where the evolving fitness and behav-
ior are partially stable. To increase stability of the approach, some reduction methodology of the
search space is proposed.

1 Introduction

An important challenge in modern network researching and swarm robotics is a design
of purposeful collective behavior [4]. Such a behavior should be technically useful,
adaptive to environmental changes and scalable in size and functional metrics [1]. One
possible paradigm here is to use evolutionary approaches for evolving desired collec-
tive behavior [7]. Using an evolutionary approach, robots can start with simple behavior
primitives and gradually increase their cooperative complexity until the collective be-
havior satisfies some imposed fitness.

The application of evolutionary approaches in swarm robotics is known. Some es-
sential references can be given in works of evolving control [2], evolving shapes [8],
evolving communication [12], [9] and others. However, essential obstacles for success-
ful application of evolutionary approaches are ”on-line” and ”on-board” requirements
imposed on the calculation of fitness and execution of evolutionary operators. The ”on-
line” requirement means that all evolutionary results should be obtained during the
life-cycle of a robot, ”on-board” means that only available on-board sensors, computa-
tional and communication resources can be used. Both requirements originate from the
practical robotic field.

The present work focuses on the problems of stability in on-line and on-board evolv-
ing of collective behavior. More exactly, we assume that there exists some collective
behavior with relatively high fitness. The questions are whether on-line and on-board
evolutionary processes: (a) will preserve this originally effective behavior? (b) will re-
place the original behavior with a better one? (c) will destroy the original behavior
without creating a better one? Answering these questions, we intend to acquire more
insight about possibilities of performing on-line and on-board artificial evolution.
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Abstract. This work focuses on evolving purposeful collective behavior
in a swarm of Jasmine micro-robots. We investigate the stability of the on-
line and on-board evolutionary approaches, where mutation, crossover as
well as fitness calculation are performed only by interacting micro-robots
without using any centralized resources. In this work it is demonstrated
that the environment-adaptive collective behavior can be obtained, where
the evolving fitness and behavior are partially stable. To increase stabil-
ity of the approach, some reduction methodology of the search space is
proposed.

1 Introduction

An important challenge in modern network researching and swarm robotics
is a design of purposeful collective behavior (Kornienko et al., 2004). Such a
behavior should be technically useful, adaptive to environmental changes and
scalable in size and functional metrics (Constantinescu et al., 2004). One possible
paradigm here is to use evolutionary approaches for evolving desired collective
behavior (Koza, 1992). Using an evolutionary approach, robots can start with
simple behavior primitives and gradually increase their cooperative complexity
until the collective behavior satisfies some imposed fitness.

The application of evolutionary approaches in swarm robotics is known.
Some essential references can be given in works of evolving control (Floreano
et al., 2008), evolving shapes (Lipson & Pollack, 2000), evolving communication
(Wischmann & Pasemann, 2006), (Marocco & Nolfi, 2006) and others. However,
essential obstacles for successful application of evolutionary approaches are
”on-line” and ”on-board” requirements imposed on the calculation of fitness
and execution of evolutionary operators. The ”on-line” requirement means that
all evolutionary results should be obtained during the life-cycle of a robot,
”on-board” means that only available on-board sensors, computational and
communication resources can be used. Both requirements originate from the
practical robotic field.

The present work focuses on the problems of stability in on-line and on-
board evolving of collective behavior. More exactly, we assume that there exists
some collective behavior with relatively high fitness. The questions are whether
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on-line and on-board evolutionary processes: (a) will preserve this originally ef-
fective behavior? (b) will replace the original behavior with a better one? (c) will
destroy the original behavior without creating a better one? Answering these
questions, we intend to acquire more insight about possibilities of performing
on-line and on-board artificial evolution.

In this work, the robot controller is represented as a generating hierarchy of

genome
generator
−−−−−−→ phenome

interpretor
−−−−−−−→ behavioral automaton. The behavioral automaton

is based on a finite Moore automaton (Fogel et al., 1995). At each state an ”atomic
action” (e.g. move, stop, turn left) is produced. For encoding the Moore automaton
a symbolic string, called phenome is used. The phenome contains the same
information as the actual automaton and can be used to copy a behavior between
different robots using local robot-robot communication. The genome contains
generating rules for the phenome sequence. To simplify treating of on-board
and on-line issues, we apply evolutionary operators only to phenome strings
from one or different robots. The fitness is selected as a measure of collision, so
that the final goal is to evolve an effective collision avoidance behavior. Since
evolving the behavior is only possible when many robots interact, collision
avoidance represents a result of collective behavior. Experiments are performed
using Jasmine IIIp micro-robots.

The rest of the paper is organized as follows. The framework of evolution-
ary experiments is described in Sec. 2, evolutionary operators in Sec. 3 and
experiments in Sec. 4. In Sec. 5 we discuss and conclude this work.

2 Hardware and software framework

In this section we briefly describe the used hardware and software framework.
Experiments are performed with the Jasmine IIIp micro-robots, see Fig. 1(a).
Each micro-robot has two Atmel AVR-microcontrollers with 8 MIPS each and
totally 2 kB RAM, 24 kB Flash memory and 1 kB non-volatile memory. For the
evolutionary approach only 6.5 kB Flash and 700 bytes RAM are available, the
phenome strings are written in 512 bytes non-volatile memory. Each robot has
a local 360◦ IR-based communication with an effective communication radius
of about 2-10 cm. When two robots meet within this radius, they establish a bi-
directional communication channel and can exchange phenome strings at 500
bytes/sec. The communication system can also be used for proximity sensing
(see more on www.swarmrobot.org).

The software framework consists of a low-level BIOS (interface to hard-
ware) and an operational system (Kornienko et al., 2005), and the high-level
genetic framework. For the genetic framework there are several design alterna-
tives, e. g. to use classical robot control, to use paradigms from the evolutionary
community or to use bio-inspired ideas. We have chosen the bio-inspired way,
firstly, due to interest of exploring alternatives to well-known solutions, sec-
ondly, because this framework is used in the projects (SYMBRION, 2008-2012)
and (REPLICATOR, 2008-2012), which are related to bio-inspired artificial evo-
lution.
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(a) (b)

Fig. 1. (a) Micro-robot Jasmine IIIp. (b) Structure of the high-level genome framework.

The structure of the genome framework is shown in Fig. 1(b). The behavior
of the robot is controlled by a behavioral automaton (Petri-nets in the over-
all framework (Kornienko et al., 2005)) and is influenced by the environment.
We call this mutual influence the phenotype of the robot. Behavioral automata
represent an explicit description of the phenotype. We call this the phenome.
This is a contradiction to biological systems, where the phenome is not directly
available. More exactly, the phenome is a symbolic string which generates the
automata. This symbolic string contains direct low-level as well as high-level
(from libraries) behavioral commands, therefore can be thought of as a func-
tional descriptor. In turn, the phenome is generated by the genome of a robot.
The genome is also a symbolic string and consists of descriptive, structural and
regulative parts and usually does not contain any direct behavioral commands.
By analogy, the genome is a structural descriptor of the system. In this frame-
work, both genome and phenome can underly evolutionary operators and can
also be influenced by the environment.

The two-layer control structure genome-phenome is very effective for recon-
figurable multi-robot organisms, where the robot system can change its own
structure and therefore the functionality (Kornienko et al., 2007). However, in
this work, where we do not change the structure of robots, evolutionary opera-
tors will be applied to the phenome. In the following we describe the theoretical
approach for evolving the phenome and show experimental results.
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3 Implementation of evolutionary framework

This section describes the theoretical model for our evolutionary approach. We
use a finite automaton based model to describe robot behavior (Fogel et al., 1995)
and a genetic programming approach (Koza, 1992) for evolving new behaviors.

3.1 The automaton model

We denote a set of byte values and a set of positive byte values as B = {0, ..., 255}
and B+ = {1, ..., 255}. The behavior of a robot depends on the sensor data. We
assume a set H of n sensor variables H = {h1, ..., hn}. The sensor variables stand
as placeholders for sensor data from real or virtual sensors (i. e. any internal
variables of the robot). Every variable hi can be set to a byte value.

As mentioned before, the main behavior of a robot is controlled by a finite
Moore automaton1. At each state, an output is produced, which is interpreted as
an atomic instruction (which can be a mechanical action like move or a whole C-
program) to be performed by the robot. The transitions between states depend
on the values of the sensor variables h1, ..., hn.

States. The set of states is denoted by Q = {q0, ..., qm}, where q0 is the initial
state of the automaton. A state contains the following information:

– an identification number N ∈ B+,

– an atomic instruction I ∈ B+ to be performed,

– an additional parameter P ∈ B+ to gain more information about the instruc-
tion, and

– the definition of all outgoing transitions from that state.

Transitions. We associated a condition to each transition, which has to eval-
uate to true for the transition to be taken. We define for this purpose a set of
conditions over the sensor variables as follows:

Definition 1. Conditions

A condition is an element of the set, defined by:

cF true | f alse | z1 ⊳ z2 | (c1 ◦ c2),

z1, z2 ∈ B+ ∪H,

⊳ ∈ {<,>,≤,≥,=,,,≈,0}, where ≈ means the range of ± 5.

◦ ∈ {AND,OR},

c1, c2 are conditions themselves.

The set of all conditions is denoted by C.

1 Moore automaton with an underlying operational system and BIOS, which perform
e.g. sensor data acquisition or interruption handling.
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Valid conditions are e. g. h1 < h2, ((h1 0 h2 AND h3 = 104) OR h5 ≥ h7),
(true AND f alse). The result of a condition (”true” or ”false”) is calculated
in the obvious way, by feeding the variables with actual sensor values and
evaluating the comparisons and logical operations. A transition is taken, if its
corresponding condition evaluates to true. At this point two special cases have
to be considered:

1. A state can have no condition that evaluates to true.

2. A state can have more than one condition that evaluates to true.

In case 1, we define an implicite transition to the initial state to be taken. In
case 2, the ”first” outgoing transition of that state is taken (the corresponding
order is not important, as long as the transition to be taken does not vary from
case to case; we took the order in which the transitions were generated).

Moore automaton for robot behavior. A Moore automaton for robot be-
havior is built by states and transitions as mentioned above. Each state carries
identification N, instruction I, parameter P and its outgoing transitions, which
are defined by a condition c ∈ C and a following state f ∈ B+. The automaton is
defined as follows:

Definition 2. Finite Moore automaton for robot behavior

A finite Moore automaton for robot behavior A is defined as follows:

A = (Q, Σ,Ω, δ, λ, q0,F),

where:

– The set of states Q = B+ × B+ × B+ × (C × B+)∗, C being the set of conditions.

Let ∀q ∈ Q:

q =
(

Nq, Iq,Pq,
(

c
q

1
, f

q

1

)

, ...,

(

c
q

|q|
, f

q

|q|

))

,

where |q| denotes the number of transitions of state q.

– The input alphabet Σ = H = (B+)n.

– The output alphabetΩ = (B+)2.

– The transition function (for q ∈ Q, h ∈ H): δ : Q ×H→ Q :

δ(q, h) =



































q′, if ∃ k ∈ {1, ..., |q|} : f
q

k
= q′ and c

q

k
evaluates to true under h

and ∀ j ∈ {1, ..., |q|}, where c
q

j
evaluates to true under h,

it holds: k ≤ j,

q0 otherwise

– The output function λ : Q→ (B+)2 : λ(q) = (Iq,Pq) (for q ∈ Q).

– The initial state q0.

– The empty set of final states: F = ∅.
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3.2 Evolutionary operators

Mutation. We developed a mutation operator, which is complete and smooth,
which means that every part of the search space is reachable and that every
single mutation causes only a small step in the search space. The mutation
operator consists of 10 atomic mutations, one of which is randomly chosen,
when the operator is used. The atomic mutations are:

1. Toggle inactive transitions:
(a) Remove a random transition, associated with the condition f alse.
(b) Add a random transition, associated with the condition f alse.

2. Remove a state:
(a) Without incoming transitions.
(b) With all outgoing transitions being associated with the condition f alse

and the state being associated with the instruction IDLE.
3. Add a new state with:

– no incoming transitions, and
– no outgoing transitions, and
– arbitrary action, and
– parameter ≤ k (k ∈ {1, ..., 255} being a constant).

4. Change a condition: Let a, b ∈ {1, ..., 255, h1, ..., h|H|}, A ∈ C a condition. Every
part of a condition that matches the following patterns can be mutated:

(a) f alse ↔ a = b ↔ a ≈ b ↔
a ≤ b ↔ a < b
a ≥ b ↔ a > b

↔ a 0 b ↔ a , b ↔ true

(b) One of the following:

(A AND true)
(A OR true)

(A AND f alse)
(A OR f alse)

↔

→

→

↔

A
true
f alse

A

↔

←

←

↔

(true AND A)
(true OR A)
( f alse AND A)
( f alse OR A)

(c) Let i be a number in a condition. Let i′ = i + rand[−k, k],
k ∈ {1, ..., 255} being a constant parameter. Mutate:

i →























i′, if 1 ≤ i′ ≤ 255

1, if i′ < 1

255, if i′ > 255

.

(d) Let hi be a sensor variable in a condition. Mutate:

hi → hrand[1,...,|H|].

5. Change a state: Let I1, I2, ..., Il be the set of instructions, (N, I,P, ∗Trans∗) a
state.
Mutate: (N, I,P, ∗Trans∗) → (N, J, (P +m) mod 255 + 1, ∗Trans∗), where
m = rand[−k, k], k ∈ B+ a constant parameter,

J =















I, if P +m > 1

Irand[1,l] otherwise
.
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Crossover. We used a simple crossover operator, where two parental phe-
nomes produce one child phenome, which is a clone of the better parent phe-
nome. A usual crossover operator has not been implemented due to insufficient
RAM memory resources (1 kB only).

3.3 Fitness Function

For each behavior to evolve, a separate fitness function has to be defined. Con-
cerning the on-board, on-line approach, some problems arise:

1. The fitness cannot be calculated exactly from the phenome, since the envi-
ronmental influence cannot be calculated.

2. Global fitness cannot be calculated because there is no central instance,
which collects information about the whole population.

3. There exists a delayed fitness, i.e. fitness can be first approximated after a
certain time period.

4. There may be unknown anomalies of a robot’s and an environment’s phys-
ical properties, which have influences on the fitness function.

For the experiments, we have developed a fitness function, which measures
the goodness of a collision avoidance behavior.

void CalcFitness_CollAvoid(void) {

fitness += 2;

if (LastAction != MOVE_FLAG) fitness -= 1;

for (int i = 1; i < 7; i++) {

if (Sensor(i) > 100) {

fitness -= 1;

break;

}

}

if (time_in_s % 30 == 0) fitness /= 2;

}

MOVE FLAG indicates, whether the last action was move; the function Sensor(i)
returns the value of the i-th sensor. The fitness value is changed each time
the fitness function is executed (5 times per second), depending on the last
performed instruction and the distance to the nearest obstacle. The idea is
to keep in motion, but away from obstacles. Assuming such a capability can
evolve evolutionary, it should be stable and therefore not disappear. Once each
30 seconds the fitness is divided by 2 so that the fitness points from earlier
behaviors cannot be accumulated. Initially, the fitness is equal to zero, but
within the first minute of the experiment, it approximates the current behavior.

4 Experiments

We have conducted six experiments to check whether the selective process is
stable enough to keep a once developed behavior through the whole experi-
ment. Each experiment was performed with 20 robots, which initially had a



8

collision avoidance automaton. The arena size was 70 × 115 cm2 of rectangular
geometry, mutation was performed each 15 seconds, crossover was performed
when robots meet each other, duration of each experiment was 25 min.

In Fig. 2(a)-(c) we show three different states of the fifth experiment: 0, 13
and 25 minutes from the beginning. There were several commonalities in all

(a) (b)

(c) (d)

Fig. 2. Course of the experiment: (a) Start; (b) 13 minutes; (c) Finish; (d); The light spot in
(b) and (c) shows clustered robots. Changes of the averaged fitness value during 25 min.
of experiments.

experiments: several robots showed a behavior which can be described as col-
lision avoidance, but different than with the initial automaton. Most robots,
however, clustered in corners and were principally dead for the experiment,
see marked spots in upper right corner in Figs. 2(b)-(c). Some robots showed an
extremely robust wall following behavior (which is related to collision avoid-
ance). Although wall following has been implemented in the past several times
manually, we were never able to implement it in such a robust and fluent way.
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Fig. 2(d) shows the fitness averaged through all experiments. The robots
can be divided into two groups: moving ones or ones caught in clusters. The
clustered robots, shown by the light spot in Figs. 2(b),(c), are dissociated from
the evolutionary process. The dotted curve shows the fitness for all robots. This
curve decreases averagely through all six experiments. The solid curve shows
the average fitness only over robots, which were not stuck in clusters and, therefore,
were still participating in the evolutionary process. The average fitness of these
robots stays at a similar level until the end of the experiments.

In the end of the experiments, more than 75% of the unclustered robots
had a positive fitness. More than 33% showed an observable behavior close to
collision avoidance. However, other robots also had automata that were close
to a sort of collision avoidance, but were unable to show this behavior because
of hardware or environmental anomalies.

These experiments indicate several important properties:

1. It appears, that the selective pressure is not sufficient, since a majority of
robots is lost in corners. Most likely the reason is an insufficient selection
process since the communication between robots has hardware difficulties
in large clusters of robots. This anomaly, effecting the search space, is also
influencing the fitness function as these robots change the environment
of the other robots by blocking them. Other anomalies are also thinkable:
e. g. one robot might shift another robot ”blindly” and make its movement
instructions ineffective.

2. Though the number of experiments is statistically low and the population
size is small, the appearance of several very good solutions could point to a
limited search space.

5 Discussions

The experiments have shown, that an on-board and on-line evolution is partially
capable of keeping a once developed behavior. Problems lie in the clustering
of robots, which cannot move and communicate. These robots dramatically
decrease collective fitness. The reason for clustering is diverse: robots hook each
other with docking connectors, anomalies in sensor data, the delayed fitness,
limited communication capability in clusters and so on. Additional experiments
need to be performed to fix hardware and communication anomalies.

However, it is demonstrated that experiments with robots cannot be per-
formed in a statistically significant manner. It is hardly possible to perform
even 100 experiments in a large population of micro-robots. It seems that there
is a need of finding new approaches by combining evolutionary paradigms with
other non-evolutionary techniques. For example, the fitness measurement can
be improved by using several plausibility checks, e. g. for a collision avoidance
the robot could first check if there even exists a move instruction in its automaton
and otherwise continue to mutate. Such a virtual measurement combined with
the actual measurement could even more dramatically reduce the search space.
This seems to be a realistic alternative for evolutionary approaches in robotics.
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The last issue to be mentioned is the possibility to perform a robotic evo-
lution first in simulation and then to copy the solution to the real robots. The
problem is that the fitness calculation is embedded into the environment. Since
we are unable to reproduce the complexity of the real environment in the sim-
ulative one, it could be expected that the evolved behavior cannot achieve the
same qualities as in the real environment. However, the following experiment
is thinkable: the real sensor data from robots can be transferred via wireless
communication into an evolutionary simulation. It could be expected that two
scenarios appear: either the evolution will develop similar solutions in real and
virtual environments or even a small inaccuracy in simulation can create an
essential change in the quality of the evolved behavior.

The next work will deal with a more sophisticated crossover operator, which
will be applied when some spatial task is achieved successfully. In this way a
more collective form of behavior can be evolved, moreover spatial statistics can
be collected.
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