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Abstract We demonstrate the ability of a swarm of autonomous micro-robots to perform
collective decision making in a dynamic environment. This decision making is an emer-
gent property of decentralized self-organization, which results from executing a very simple
bio-inspired algorithm. This algorithm allows the robotic swarm to choose from several
distinct light sources in the environment and to aggregate in the area with the highest illumi-
nance. Interestingly, these decisions are formed by the collective, although no information
is exchanged by the robots. The only communicative act is the detection of robot-to-robot
encounters. We studied the performance of the robotic swarm under four environmental
conditions and investigated the dynamics of the aggregation behaviour as well as the flexi-
bility and the robustness of the solutions. In summary, we can report that the tested robotic
swarm showed two main characteristic features of swarm systems: it behaved flexible and
the achieved solutions were very robust. This was achieved with limited individual sensor
abilities and with low computational effort on each single robot in the swarm.
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1 Introduction

The science of “swarm robotics” focuses on the idea to create “intelligent” systems by forming
cooperative swarms of autonomous robotic units. The main aim of this approach is the idea
that collective intelligence can arise from the interaction of a high number of relatively simple
units [5]. This approach is inspired by many findings of collective intelligence in biological
organisms, such as fish, birds, ants, termites, bees and slime moulds. The relevant properties
of many of these biological systems are reviewed in [6,7], describing the key aspects of
these biological systems by the term “self-organized”. While “self-organization” describes
systems that tend to approach a state of a higher degree of order, also another term is often
used in conjunction with those biological systems: “swarm intelligence” [23]. The required
key features that have to be present to identify a system as being “swarm intelligent” are
summarized by Millonas [29] and (in other terms) also by Şahin [32], who states the follow-
ing five principles for swarm-intelligent systems, which we will further use to categorize the
features of our swarm robotic algorithm:

1. The proximity principle refers to a direct and local behavioural response to a given local
stimulus, leading to a collective space-and-time computation.

2. The quality principle demands, that the collective has to be able to respond to certain
quality factors in the environment.

3. The principle of diverse response demands that the swarm should not narrow down its
behavioural repertoire excessively, to allow the exploration of several alternative solving
models. This can be achieved by the locality of noise in the environment, but also by the
heterogeneity of the swarm members.

4. The principle of stability refers to the fact that the swarm should not switch its behav-
ioural state in reaction to every (small) environmental fluctuation, because such volatility
will prevent the swarm’s conversion towards near-optimal solutions.

5. In contrast to that, the principle of adaptability demands the swarm’s ability to change
its behavioural state in reaction to more prominent environmental changes. Obviously,
a good swarm system will be configured in a way to achieve a well-balanced mixture of
the fourth and the fifth principles, as is discussed in [29].

Millonas [29] refers to some sort of utility underlying these principles, which, for us as
biologists, do not have to be mentioned explicitly: Only swarm-forming organisms which
show individual behaviours that lead also to a gain of the collective have survived natural
selection. Thus we can assume, that today’s swarm organisms all show at least one kind of
utility concerning their swarm behaviours. In social insects, the primary unit of selection is
the whole colony, so we can assume that individual behaviours are automatically selected for
their utility for the whole group. This is important, because nature offers a huge variety of
well-optimized swarm systems as a possible source of inspiration for technical systems, e.g.,
swarm robotic systems. Although there are many swarm systems described in the biological
world, a plethora of behavioural programs (algorithms) has been proposed which were all
inspired by collective behaviour of ants, especially by ants’ foraging behaviour [27], task allo-
cation mechanisms [28] and collective sorting behaviour [21]. In recent years, the scientific
focus of swarm robotics has shifted from mimicking biological behaviours to animal-to-
robot interaction [10,14,19,40], as well as to the understanding of the underlying principles
of swarm behaviours [8,38]. Interestingly, this coincided with a decrease of the complexity
of the swarm systems that were studied, because in both cases very simple behavioural pro-
grams like “aggregation” or “dispersion” [30,38] were frequently studied. One reason for
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that can be that bio-mimicking often leads to complex and not very generalized algorithms
which are hard to analyse.

1.1 Motivation and prior studies

Within the swarm robotic project I-Swarm [37], we developed a set of bio-inspired algo-
rithms which were inspired by slime mould behaviour [34] and by honeybee behaviour [35].
We analysed these algorithms in computer simulations of robotic swarms. These first bio-
inspired algorithms of the I-Swarm project have a high order of complexity, thus we looked
for another swarm algorithm that was able to produce “intelligent” swarm-level behaviour
with a minimum of algorithmic complexity. One low-complexity algorithm we found was
inspired by some properties of honeybees’ aggregation behaviour in a temperature gradient
field, which was translated into the physical world of a Jasmine robot. In addition to computer
simulation we used a swarm of Jasmine-III robots [24,25], which are a spin-off product of
the I-Swarm project, to analyse bio-inspired swarm algorithms in real physical hardware.

In [26], we describe how we derived a swarm robotic algorithm, which is able to enable
aggregation behaviour of robots at a single and stable light source without any robot-to-robot
communication. Our pervious studies [26] focussed on describing the interesting honey-
bee behaviour that inspired us to the swarm robotic algorithm, as well as on analysing the
algorithm by macroscopic models. Based on the results found in [26], we wanted to know
whether or not our algorithm could also successfully control a robotic swarm in a com-
plex environment, consisting of multiple light sources (aggregation targets) which alter their
attractiveness in a fluctuating way. In [26], we concentrated on finding an optimal swarm
density (number of robots per area unit of the arena). In the study at hand, we used a swarm
close to this optimal density and investigated the decision making abilities of such a robotic
swarm.

In the following, we give a short description of the corresponding honeybee behaviour as
well as of the deduced control algorithm. Figure 1 shows two selected exemplary sequences
that show honeybee aggregation behaviour. A detailed ethological analysis of these behav-
iours is beyond the scope of this article at hand and will be published separately.

It is known from previous studies that bees show temperature preferences and tend to
position themselves in a comfortable area [9,18]. For young honeybees, such areas have
a temperature range between 34 and 38◦C. In preceding experiments with single bees and
groups of bees, an interesting behaviour was observed. In these experiments, a single bee
moved almost randomly around the arena, with a slight bias towards warmer areas, but it
often left the warm spot again (Fig. 1a). Thus the single bee was not able to find a “stable
solution” and to stay in the warm area. In contrast to that, a collective of 15 bees was able to
converge to a stable solution and to aggregate near the optimal temperature spot: Throughout
the course of these experiments (Fig. 1b–d), the bees moved again without significant prefer-
ence of direction and formed clusters (often pairs) with other bees. Those clusters that were
accidentally formed in warm areas lasted longer than those formed in colder areas. Finally,
all bees rested in or close to the warm spot.

Based on these interesting phenomena of collective behaviours observable in honeybees
(see Fig. 1), we implemented a control algorithm for swarm robots. Based on our observa-
tions, we assumed that no higher-level communication among the bees is happening except
reactions to bee-to-bee collisions. It is possible that short-range chemical communication via
volatile pheromones is happening among the bees, but so far it could not be shown that such
a mechanism plays an important part in the collective aggregation behaviour. This fact makes
the collective aggregation behaviour of honeybees different from the mechanisms underlying
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Fig. 1 Navigation behaviour of young bees (1 day old) in a temperature gradient. All figures: The warm area
(approx. 38◦C) is on the left side of the arena, as indicated by the dark spot. The right side of the arena had
a temperature of 31◦C. Young honeybees prefer temperature between 34◦C and 38◦C [9]. (a) Trajectory of
one single bee for 8 min. (b–d) Time lapse of the same experiment with 15 bees (30 s, 1 min, and 10 min after
the release of the bees in the arena). Bees were released in the colder area on the right side of the arena

the aggregation of other social animals, e.g., the chain formation of some ant species [11].
The assumed lack of involvement of significant chemical communication makes the col-
lective optimum-finding of honeybees a valuable source of inspiration for a swarm robotic
control algorithm, because swarm robots often have only limited abilities of sensing and
of communication. Thus, an algorithm that can produce interesting swarm-level behaviours
without higher-level communication is of high relevance in this field of robot science.

Basic principles of our algorithm are described in [26] in detail. In the study presented
here, we investigated the resulting emergent properties of the collective behaviours of our
proposed control algorithm. We especially focussed on the ability of the robotic swarm to
perform collective decisions and to preserve the found solutions over time (collective mem-
ory). Note that these features are resulting from a control algorithm that does not involve
higher-level robot-to-robot communication. Nor does it involve any individual memory stor-
age that keeps explicit information about environmental factors. In contrast to that, in our
experiments the clusters that are formed as well as the formed robot constellations and distri-
butions act as a collective memory, which does not reside inside of one individual robot but
within the whole swarm. We interpret the abilities of the robot swarm to perform collective
decisions without individual adaptation as a form of “swarm intelligence”. Like neurons
inside an animal’s brain change their connectivity during a learning process, the network of
(weak) robot-to-robot interactions, which are actually just collisions,1 lead to specific spatial
constellations that promote a collective decision.

1 Throughout this article, the term “collision” is used synonymously for close robot-to-robot encounters
(3–5 cm) and not physical collisions of the robots’ bodies.
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Fig. 2 State-diagram of our control algorithm BEECLUST. Rounded boxes represent behavioural states of a
robot, diamonds identify control structures (if-else) and arrows indicate state transitions. Texts at the arrows
indicate probabilities of these transitions (p-values) or events that trigger a transition

1.2 The bio-inspired robot control algorithm BEECLUST

For our robot swarm algorithm (further called BEECLUST), we performed several steps of
abstraction and simplified the behaviour of individual bees as far as possible. These simpli-
fied bee behaviours were then translated into a robot control algorithm. The resulting robot
behaviour can be described by the following aspects:

1. All robots move randomly in the arena. Whenever a robot detects an obstacle in front,
it stops and listens for possible collision-avoidance signals. If such signals are detected,
the robot assumes that the obstacle is another robot. If no such signals are detected, the
robot assumes that the obstacle is a wall.

2. After a robot encounters a non-robotic obstacle, it turns randomly and continues with
step 1.

3. After a robot encounters another robot, it stops and measures the local illuminance.
4. The higher the local illuminance, the longer the robot waits on the place. After the robot

has finished its waiting term, it rotates randomly and proceeds with step 1.

The states, transitions and control structures of the algorithm are depicted in the state
diagram in Fig. 2. The diagram depicts the basic random walk behaviour as two states “turn”
and “move forward”. The measurement phase of local illuminance and the calculation of the
duration of the waiting phase are depicted as one combined state. This robot behaviour leads
to clusters of robots resting in the “wait” state, as was demonstrated in [26]. Further details
of our algorithm (e.g., specific parameterisation) are described in detail in Sect. 2.

1.3 The focal research questions

For our studies, we assumed that the emerging collective behaviours are complex and allow
the swarm to perform a variety of collective decisions. To investigate these abilities, we tested
a swarm of 15 robots in an arena that was partially illuminated by two light spots that differed
in their emitted light intensity. This “choice experiment” is very similar to typical behavioural
experiments performed in ethology to test choice preferences in real animals. We measured
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the number of robots that clustered below each of these light spots. By varying the intensity
of the light spots or by turning off one light spot, we tested the following focal questions:

1. Do the robots cluster below a light?
2. Is the clustering behaviour affected by the light intensity? Does the number of aggregated

robots change? Does the constellation of aggregated robots change?
3. In the case of two simultaneous lights of different intensity: Will the robots preferentially

aggregate at one of these light sources?
4. Can the collective decision be altered in response to an environmental fluctuation?
5. Is the collective state preserved for some time in the environment?
6. Is there competition among the lights for the available robots?

We conducted two series of experiments that were designed to test the six questions listed
above. Some of these questions depend on the answers to other questions, thus it was very
important for us to verify or falsify each one of these theses.

2 Materials and methods

To test our hypotheses we used a swarm consisting of 15 robots of the type Jasmine-III
(Fig. 9, left image). Each robot was equipped with identical sets of illuminance sensors and
collision-avoidance sensors (for details see Sect. 2.4), as well as with identical software con-
trollers. Thus, our robotic swarm was homogeneous concerning the controller software and
concerning the basic design of the robots. As preliminary experiments showed, our robotic
swarm was heterogeneous concerning the sensory units of the robots (see Fig. 10b) as well
as concerning the precision of motion (see Fig. 10a). The robotic swarm was tested in a rect-
angular arena that was equipped with two light sources; each of them was able to produce
different levels of illuminance. For details, please see the next subsection below. The col-
lective behaviour of the robotic swarm was observed under a set of differing environmental
conditions (concerning local illuminance) and the experiments were recorded via a video
camera from a point above the centre of the arena. The positions of the aggregated robots
were sampled in intervals of 15 s. For details, please see Sect. 2.2.

2.1 The arena setup

All experiments were performed in a flat, obstacle free, rectangular arena of 150 cm×100 cm
(see Fig. 3). The arena was equipped with two dimmable light sources, which emitted light
in a wavelength which was well detectable for the light-sensor-boards of the robots. The

Fig. 3 Picture of the arena setup used for the robotic experiment
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light sources were positioned above the left and the right side of the arena. By dimming or
switching off a light, different distributions of illuminance were generated (see also Sects. 3.1
and 3.2).

2.2 The experiments

2.2.1 Measurements

For our analyses, we counted all robots in the behavioural state “wait” (see Fig. 2) and clas-
sified them first into two groups, depending on which of the two lights the robots were closer
to. To get a finer resolution of our results, we classified the robots also into four categories,
depending on their distance to the point with the maximum illuminance, which was always
directly below the centre of the corresponding light. For categorisation, we defined four areas
(A, B, C, and D), forming four concentric ring-shaped areas around the brightest spot below
the corresponding light (see Fig. 4). Radii of these zones are described in Table 1.

2.2.2 Experimental design I: static environment

Before we tested our robot swarm in a dynamic environment, we investigated the aggregation
behaviour of robots below a light spot in a static environment. In this experimental setup,
which was repeated six times, we tested the swarm with either one bright light (1,100 lux, see
Fig. 5b) or with one dimmed light (390 lux, see Fig. 5a) or without any light source (ambient
illumination of <10 lux) in the arena. The results of these three experiments were used also
as references for the following experiments in dynamic environments.

Fig. 4 Sketch of the four different areas that were used to classify how close each aggregated robot had
approached the spot with the highest illuminance below the corresponding light

Table 1 Radii of the areas
measured from the point of
maximum illuminance

Area Radius

A r < 11 cm
B 11 ≤ r < 22 cm
C 22 ≤ r < 33 cm
D 33 ≤ r < 66 cm

123



Auton Agent Multi-Agent Syst

Fig. 5 Spatial distribution of illuminance in the arena during the two experiments that focussed on the
collective behaviour of the robotic swarm in a static environment. (a) Spatial distribution of illuminance
within the arena with one dimmed light (390 lux). (b) Spatial distribution of illuminance within the arena with
one bright light (1,100 lux). The third setup with no light in the arena is not shown in the figure. The small
sun-like symbols in the upper sections of the graphs represent the lights’ intensities at the respective side. A
striped sun indicates that the light was dimmed; a white sun indicates that the light was bright and the black
sun indicates that the light was switched off

Fig. 6 Timing of our experiments focussing on the behaviour of the robotic swarm in a dynamic environment.
Every 180 s the lights’ intensities were modified, thus changing the environmental conditions for the robotic
swarm

2.2.3 Experimental design II: dynamic environment

This experimental setup, which was repeated six times, consisted of five phases (four exper-
imental phases and one control phase). At the beginning of each phase we altered the light
intensities of the two lights. Figure 6 shows the timings of these environmental changes. The
experiments started with an initial phase with one dimmed light A (3 min). During the second
phase an additional bright light was introduced on the opposite side of the arena (light B for
3 min). During the third phase another change in the environment took place: The light inten-
sity of both lights was switched, so that the bright light was now located on the right side and
the dimmed light was located on the left side. During the fourth phase, the bright light on the
right side of the arena was turned off and the dimmed light was continued (3 min). Shapes of
the light gradients of these four phases are depicted in Fig. 7. In a final fifth phase (not shown
in Figs. 6 and 7), all lights were shut off, to test whether or not the robots switched back to
random movement, to ensure that clusters were not formed by “malfunctioning” robots.
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Fig. 7 Spatial distribution of illuminance in the arena during the four distinct phases of our experiments in
the dynamic environment. The small sun-like symbols in the upper sections of the graphs represent the lights’
intensities at the respective light. A striped sun indicates that the light was dimmed; a white sun indicates that
the light was bright and the black sun indicates that the light was switched off

2.3 The controller BEECLUST

As mentioned in Sect. 1, the BEECLUST algorithm can be described by a finite state
automaton that was inspired by the behaviour of honeybees navigating in a temperature gra-
dient. The key property of the algorithm, which governs the emergent collective behaviour,
is the function that maps the measured local illuminance to a waiting time after each robot-
to-robot collision. The function is defined by Eq. 1.

w (t) = wmax · s (t)2

s (t)2 + θ
(1)

In Eq. 1, the variable w(t) represents the waiting-time of a robot in seconds, and the vari-
able s(t) represents the sensor value reported by the light-sensor mounted atop the robot (for
more detail see Sect. 2.4). The parameter wmax expresses the maximum waiting time of a
robot at locations of maximum (infinite) luminance. The parameter � models the steepness
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Fig. 8 Dependency of the duration of the state “wait” on the local illuminance measured by the robot. The
bold curve indicates the function used in the experiments described in this article, the thin curve depicts the
function used in [26]. The dotted vertical line indicates the median illuminance measured by the robots directly
below a bright light; the vertical parallel line indicates the medium illuminance measured by the robots directly
below a dimmed light

of the stimulus-response curve, that his how “fast” the waiting time increases with increasing
luminance in the steep part of the sigmoid curve.

In previous experiments [26], we used the values of wmax = 40 and � = 343000. We
found (in preliminary experiments), that we can achieve faster aggregation of robots at the
target zones by using values of wmax = 66 and � = 7000, what we did in the studies pre-
sented here. A comparison between these two parameterizations can be seen in Fig. 8. The
modification of the “waiting-curve” was necessary to improve aggregation behaviour in the
arena setup we used in the experiments described here and is mainly dependent on the shape
of the light gradients that are formed by the lamps.

2.4 General robot design

The Jasmine-III robot (Fig. 9, top image) is a two-wheeled robot of the size of about
30×30×25 mm. It is equipped with an ATMEGA168 microprocessor, which is programma-
ble in C [26,41]. It has six IR-sensors for distance measurement and for collision avoidance.
The sensors range is approx. 60 mm (see Fig. 9, bottom image). The average speed of a robot
in our experiments was approx. 300 mm/s. A more detailed description of the robot hardware
can be found in [26], building instructions are given in [41].

2.5 Robot heterogeneity

Some of the robots tended to have a (slight) drift aside (Fig. 10a), even when the software
controller instructed the robots to drive straight ahead. This individual attribute of each robot
was evident in all experiments described here. For our experiments, this motion heterogeneity
was actually not a problem, since it allowed us to test the stability of the collective behaviour.

Our robots were equipped with light-sensor boards mounted on top to measure the local
light conditions. For details about the light board design, please refer to [41]. Due to manufac-
turing reasons, these sensor-boards slightly differed in their response to a given environmental
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Fig. 9 Top: The Jasmine-III
robot, front side: (a) one of the
two motors; (b)
motion-control-board for
compensating manufacturing
differences of the motors; (c)
lithium-polymer accumulator; (d)
main board; (e)
illuminance-sensor-board; (f)
single light sensor on light-board;
(g) IR-sensor for distance
measurement; (h) IR-emitter,
corresponding with IR-sensor.
Bottom: IR-image of a single
robot. Arrow indicates heading of
robot

illuminance (see Fig. 10b). Again, this sensorial heterogeneity was a positive feature, as it
allowed us to investigate the stability of our bio-inspired algorithm.

2.6 Sampling, data evaluation & statistics

For our analyses we repeated each experimental setup 6 times. We sampled the number
of aggregated robots (non-moving robots in the “wait” state) in intervals of 15 s. In each
environmental condition (experimental phase, 180 s duration), we excluded the first three
intervals of the 12 samples from our data sets that were evaluated. This was done to eliminate
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Fig. 10 (a) Distribution of the robots’ side-drifts. Most robots (9 of 15) had no, or only a very slight drift
aside with curve-radii greater than 80 cm. Some robots (6 of 15) had a curve radius of less then 60 cm and more
than 20 cm. No robot had a curve radius below 20 cm. (b) Median, quartiles and extreme values of measured
light intensities (reported sensor values) under constant controlled conditions (1,100 and 390 lux)

the transitional periods from our data and to consider just the “final solutions” the swarm
converged to.

For statistical tests we used one-way ANOVA (completely randomized blocks) to test
whether or not the environmental conditions significantly affected the observed aggregation
behaviour of the robots. Comparison of means was performed with Student–Newman–Keuls
post-hoc test after the ANOVA analyses. Pair-wise comparisons of means were performed as
paired Wilcoxon signed rank test with continuity correction. Figures depict medians, quartiles
and extreme values throughout this article, except where mentioned differently.

3 Results

3.1 Static environment

As shown in Fig. 11, the environmental conditions affected the aggregation behaviour of
the robot swarm significantly (ANOVA, F1,106 = 238.9, p < 0.00001). Under conditions
of one bright light (1,100 lux) in the arena, 9.4 ± 1.8 robots aggregated below the bright
light. In contrast to that, fewer (4.3 ± 1.6) robots aggregated if the light was dimmed to
390 lux. No robots aggregated anywhere in the arena (control setup), when the light was
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Fig. 11 (a) Number of aggregated robots per interval in a static environment with one bright light (1,100 lux)
in the arena. Approx. 60% of all robots aggregated under this environmental condition. (b) Number of aggre-
gated robots per interval in a static environment with one dimmed light (390 lux) in the arena. Approx. 30%
of all robots aggregated under this environmental condition. (c) Number of aggregated robots per interval in a
static environment without any light source. This environmental condition always resulted in no aggregation
of robots. Medians, quartiles, and extremes are depicted. N = 6 repetitions with nine sampling intervals each

turned off. Statistical analyses showed, that the results gained in all six repetitions of the same
environmental setting were not statistically differentiable (ANOVA, bright light: F5,49 = 2.1,
n.s.; dimmed light: F5,49 = 0.1, n.s.).

By classifying the robots’ locations into four areas (see Sect. 2), we analysed the spatial
distributions of the aggregated robots. Area A was the area around the brightest spot (below
the light), the areas B, C, and D were defined by concentric rings around area A. Area D
was the furthest away from the light (see Fig. 4). Our experiments with one dimmed light
resulted in different robot distributions than experiments with one bright light (Fig. 12). To
demonstrate how our algorithm changes the swarm behaviour compared to the basic random
movement, a simple mathematical model was constructed to predict the expected distributions
for randomly aggregating robots.

Concerning the fraction of the robot swarm that aggregated in the four areas, the following
picture was found: Under dimmed light conditions, a higher fraction of aggregated robots
was located in areas A, B, and C compared to the random aggregation model (see Fig. 12a).
Under bright light conditions, a higher fraction of aggregated robots was found in areas B
and C, compared to the random aggregation model (see Fig. 12a).

Concerning the expected density of aggregated robots within a square zone of 1 dm2 within
each of these areas, a different picture was observed: With dimmed light, the areas A and
B showed the highest positive deviation from the random aggregation model, which means
that robots preferentially aggregated in the areas A and B (see Fig. 12b). Under conditions
of bright light, the robots preferentially aggregated in the areas B and C, compared to the
random aggregation model (see Fig. 12b).
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Fig. 12 (a) Allocation of all aggregated robots to the four areas. Bars indicate the fractions of all aggregated
robots measured during our experiments with either a dimmed light or a bright light. The line indicates the
numbers of aggregated robots predicted by a model of random-walk and random aggregation. (b) Mean num-
ber of robots per measured interval, normalized according to the different area sizes. Bars indicate the mean
of the number of robots observed in the corresponding area during our experiments with either a dimmed light
or a bright light. Lines indicate the number of aggregated robots predicted by a model of random-walk and of
equivalent mean waiting times as was measured in the real robots for each light condition. N = 6 repetitions
with nine sampling intervals each

In summary, the robots approached the centre of the light spot closer under conditions of
the dimmed light compared with conditions of a bright light in the arena.

3.2 Dynamic environment

In a second experimental setup, we examined the robotic swarm in a changing environment.
Our robotic swarm always reconfigured itself according to the environmental condition that
was present in each experimental phase (see Fig. 13). During the first 4 experimental phases,
we altered the intensities of two lights. In the first phase, approx. 30% of the robots aggre-
gated at the dimmed light A and no robots aggregated at light B, which was switched off
(Fig. 14a,b). In the second phase, the dimmed light A did not change, but light B was switched
on with full intensity. Throughout this second phase there was a constant decrease in the num-
ber of robots which previously aggregated at the dimmed light A and a constant increase in
the number of robots which now aggregated at the bright light B. Finally, approx. 55% of all
robots clustered at the brighter light B, while the number of robots clustered at the dimmed
light decreased below 15% of the whole swarm (Fig. 14a,b). At the beginning of the third
phase the conditions changed again as the dimmed light A was switched to full intensity,
whereas the bright light B was dimmed. Throughout this third phase there was a constant
increase in the number of robots which aggregated at the (now) bright light A and a constant
decrease in the number of robots which had aggregated at the dimmed light B. At the end
of this phase, approx. 60% of all robots clustered at the (now) bright light A and approx.
20% of the robots clustered at the dimmed light B, which had been bright in the preceding
phase (Fig. 14a,b). During the fourth phase, the previously bright light A was switched off,
which led to an increase of the number of aggregated robots at the dimmed light B (30%
of all robots). No robots clustered below light A, which was switched off. In a final fifth
(control) phase, all lights were switched off, which led to no aggregation of robots at all (data
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Fig. 13 Photographs of typical final swarm configurations at the end of each of the four phases in the dynamic
experiment

not shown). This fifth phase showed that clusters were 100% light-induced and not artefacts,
as malfunctioning robots could also cause clustering. Also the total number of aggregated
robots changed significantly (ANOVA, F1,22 = 189.8, p < 0.00001) depending on the light
condition: In the phases with just one dimmed light (phase 1 and 4), the mean number of
aggregated robots (4.6 ± 1.9) was significantly lower than the mean number of aggregated
robots (10.5 ± 1.9) in the phases with one dimmed and one bright light (phase 2 and 3).

In all four phases of the experiment, the mean number of robots aggregating at the brighter
light spot was significantly higher (paired Wilcoxon signed rank test with continuity correc-
tion, n = 6 repetitions with nine intervals for each light for each phase, p < 0.001) than on
the light with lower illuminance (or no illuminance in phase 1 and 4).

We tested the hypothesis that the observed differences in the robots’ allocations below
the lights were induced by the lights’ settings in the four phases. Figure 15a compares the
median observed number of aggregated robots during the four experimental phases. It was
found that at light A as well as at light B, the mean number of aggregated robots was different
between the experimental phases, but not between the repetitions of each phase. Table 2 gives
the summarized statistical results for these analyses.

Figure 15b shows that a lower number of robots aggregated at the dimmed light in phases
when also a bright light was present in the arena (2.7 ± 1.8), compared to phases without
any other light (4.6 ± 1.9; ANOVA, F1,10 = 11.6, p < 0.01).
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Fig. 14 (a) Number of aggregated robots at light A. The three vertical lines indicate the timings of the changes
in the environment. (b) Number of aggregated robots at light B. (c) Total number of aggregated robots, regard-
less of arena side. N = 6 repetitions. The small sun-like symbols in the upper sections of the graphs represent
the lights’ intensities at the respective light. A striped sun indicates that the light was dimmed during this
phase; a white sun indicates that the light was bright and the black sun indicates that the light was switched
off
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Fig. 15 (a) Box & whisker diagram depicting the median number of aggregated robots in each environmental
configuration. N = 6 repetitions with nine intervals each. (b) Box & whisker diagram of those phases that used
a dimmed light without any other competing light (phases 1 and 4) versus those phases that used a dimmed
light that was competed by a bright light (phases 2 and 3). N = 12 per arena competition status with nine
intervals each. The small sun-like symbols in the upper sections of the graphs represent the lights’ intensities
at the respective light. A striped sun indicates that the light was dimmed; a white sun indicates that the light
was bright and the black sun indicates that the light was switched off

Table 2 Statistical results of the comparison of the four experimental phases concerning the mean number
of aggregated robots

Phase Mean number of Non-significant F3,20 p
aggregated robots ranges

Robots at light A 1 4.2 a 40.5 <0.00001
2 2.5 b
3 8.3 c
4 0.02 d

Robots at light B 1 0.1 e 51.8 <0.00001
2 7.3 f
3 2.9 g
4 4.8 h

We used one-way ANOVA (completely randomized blocks) with post-hoc comparisons of the means (Stu-
dent–Newman–Keuls). N = 6 repetitions of each phase. Mean values of the last nine measured intervals in
each phase were used

4 Discussion

Our experiments showed that the bio-inspired control algorithm BEECLUST is able to pro-
duce a variety of interesting collective behaviours. In all tested circumstances, the swarm of
robots was able to collectively converge to solutions and to aggregate close to the brightest
available light in the arena. In the following, we will first discuss the gained results in order
to clarify which of our focal questions was answered by our experimental results. In addition,
we want to discuss the key properties of our algorithm in order to check whether or not it can
be classified as being “swarm intelligent”, according to the principles stated in [29].

4.1 Did the robots cluster below a light?

The experiments performed in the stable environment showed that the robot swarm was
always able to locate the light, thus it was able to perform “space-and-time computations” in
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the arena (see Fig. 15). This ability was achieved with a very limited sensory range and with
almost no actuation. The only form of “actuation” of our robots was “not to move”, but this
was performed in respect of the local illuminance. Thus, the proximity principle, mentioned
in [29], was met by our algorithm.

4.2 Was the clustering behaviour affected by the light intensity?

In addition, the robotic swarm modulated its collective behaviour in a way that correlated
with the environmental situation (see Fig. 15). The number of aggregated robots was posi-
tively correlated with light intensity (=illuminance). Thus, we can conclude that not only
the individual robot is able to respond to a quality factor in the environment (see Fig. 8), but
also the whole swarm of robots can respond to such quality factors. This is consistent with
the demand of the quality principle mentioned in [29].

One aspect of the principle of stability was already seen in the experiments with the stable
environment: In all six repetitions that we performed with each of the three tested environ-
mental conditions, the resulting cluster sizes did not differ significantly, thus, we conclude,
that our algorithm leads to precise and stable results.

As can be seen in Fig. 15a and b, the different light conditions led to different cluster
constellations in the arena. All of them differed from a random aggregation model, thus it
can be interpreted as being a result of our robotic algorithm. With dimmed light, the higher
fraction of the robots clustered closer to the point with the highest illuminance. Bright lights
attracted more robots, but due to the emerging robot-to-robot constellations, these robots
did not approach the light spot as efficiently as it was done with dimmed light. Thus the
robot swarm was always able to converge towards clusters close to the optimal light spot,
but performed different strategies: Bright light attracts more robots (in total), but dimmed
light leads to more precise aggregation. We conclude that this ability satisfies the principle
of diverse response as it was mentioned in [29].

4.3 In the case of two simultaneous lights with different intensities: did the robots
preferentially aggregate at one of these light sources?

This question was answered by the experiments depicted in Fig. 14, which were performed
in a dynamic environment. We observed that the robot swarm was stable enough (principle
of stability) to converge to a desired collective state in each of the environmental conditions
and to preserve this state up to the end of the corresponding environmental phase: The robot
swarm aggregated mainly on the side of the arena that had the higher light intensity. It is
important to know that also the dimmed light was selected by the robot swarm, thus the illu-
minance caused by the dimmed light was not below a behavioural threshold. But whenever
the bright light was present simultaneously, the robotic swarm aggregated preferentially on
the brighter side of the arena.

4.4 Could the collective decision be altered in response to an environmental fluctuation?

After each environmental change, the swarm was flexible enough (principle of adaptability)
to change its collective state and to converge to a new near-optimal solution. The transitional
period lasted for approx. 45 s (see Fig. 14), which is resulting from the way we implemented
the dependency of the waiting period on the local illuminance (see Fig. 8).
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4.5 Was the collective state preserved for some time in the environment?

We observed that the robotic solutions endured in the environment as long as the correspond-
ing stimulus was present. Bigger clusters survived for approx. 45 s. after the environment
changed its illuminance configuration (see Fig. 14). Thus, we conclude that short-term fluc-
tuations that last for not longer than approx. 30 s can be compensated by our robotic algorithm.
This property can be easily be modified by altering the parameters wmax and � used in Eq. 1,
which is depicted in Fig. 8.

4.6 Was there competition among the lights for the available robots?

Statistical analysis show that the number of robots aggregated at the dimmed light was sig-
nificantly lowered in those phases where there was also a bright light present simultaneously.
This can be interpreted as a competition between the two clusters of robots formed below the
two lights in the arena. The shared limited resource, that the clusters competed for, was the
limited number of free moving robots. The fact that we found indications of competition in
our experimental data indicates that our swarm robotic system involves a positive feedback,
which we interpret as follows: Bigger clusters are hit by randomly moving robots more likely
than smaller clusters. Thus bigger clusters “attract” more robots. Higher illumination causes
individual robots to wait for a longer period, thus higher illuminance allows clusters to stay
big for a longer time, or even to grow faster. The fact that there were still robots aggregated at
the dimmed light spot in the presence of the bright light tells us, that the positive feedback in
the system is relatively weak. This is an important finding for further improving the algorithm
to be more selective for light sources: Increasing the strength of the present positive feedback
loops will favour aggregation on brighter lights more over the aggregation at the spots with
weaker illuminance. Thus an improved algorithm (future work) that allows modulating the
strength of these feedback loops will allow modulating the selectiveness of the collective
swarm behaviour.

Interestingly, positive feedback loops that favour collective decisions are frequently
described in natural “swarm systems”. In ants, the pheromone deposited on ant trails provides
the positive feedback to favour shorter paths over longer ones [3,12]. These examples all
involve chemical communication, a method that is achievable in swarm robotics only with
complex technical devices [39]. In cockroaches, local environmental cues promote the aggre-
gation behaviour, whereby chemical promoters of aggregation are likely not very volatile,
thus they act assumedly only at very short range [1,22]. Such short-ranging positive feedback
loops were also shown to promote swarm-intelligent honeybee foraging decisions [33,36].
In this case, the positive feedback is not achieved by chemical substances, but it is achieved
by behavioural interactions (dances), which only act very locally and, unlike chemical sig-
nals, do not persist over longer time. This points us into an interesting direction for further
improvements of our swarm robotic algorithm: Can simple behavioural adaptations further
increase the positive feedback to improve the selectiveness of the robotic swarm?

4.7 Generality of our approach

We investigated the generality of our approach in various ways. To see, whether or not our
findings are closely related to the used robotic hardware, we created a variety of macroscopic
models which abstract the majority of the hardware features by treating the robots like gas
molecules of an ideal gas or like particles driven by Brownian motion [20,26]. We also imple-
mented bottom-up multi-agent simulations, which model Jasmine robots (6 IR detectors, 2

123



Auton Agent Multi-Agent Syst

wheels) as well as I-Swarm robots (4 IR detectors, 3 legs). All these simulations and models
showed that our algorithm is predicted to cause aggregation behaviour comparable to the
behaviour observed in our real robotic swarm, regardless how much a robot’s hardware is
abstracted. These studies revealed that the most critical factors for our algorithm are the den-
sity of robots in the arena and the probability of robot-to-robot detection. These two factors
are critical factors in any swarm robotic system. In future studies, we will investigate our
algorithm also with different types of stimuli: Instead of light spots we will test sound fields,
temperature gradients and chemical gradients.

4.8 Our work in the context of current swarm robotics research

Many tasks for robotic swarms are based upon aggregation. The importance of this behaviour
has led to various approaches in its analysis and utilization. In [38] the probabilistic clustering
behaviour of an aggregating robotic swarm is described from a macroscopic point of view
and the results compared to simulations. A similar approach is made in [8] using a cock-
roach-inspired algorithm. An evolutionary algorithm is used in [13] to evolve the neural net
controllers of a robotic swarm to achieve aggregation behaviour. In contrast to our real-world
experiments, the simulated environments in [8,13,38] are homogenous without any spatial
distribution and thus only the probabilistic aggregate sizes are analyzed. The evolutionary
algorithm approach described in [13] was also used for simulations with a heterogeneous
arena in [2] where a small group of robots utilized an evolved neural network controller that
enabled the robots to collectively move towards a light source.

Another approach that, on the first sight, looks rather similar to our approach is described
in [15], where a robotic swarm aggregates in an arena with two shaded shelters. The robotic
swarm utilizes a “cockroach-derived algorithm” which is based on the very detailed mimicry
of cockroach behaviour [22]. However, besides the similar looking result of two aggregates of
robots in specific areas, the objectives for [15] are very different from our approach: BEEC-
LUST is an algorithm that is inspired by honeybees and is intended to enable a robotic swarm
to collectively choose an optimal site for aggregation. The algorithm used in [15] is aimed
to emulate cockroach behaviour as closely as possible and is therefore much more complex
concerning its robotic implementation. The BEECLUST algorithm uses a correlated random
walk, whereas the cockroach-derived algorithm consists of a correlated random walk in the
centre of the arena and a wall-following behaviour at the walls of the arena. In addition, our
robots stop and perform measurements of the environment only when encountering other
robots, in contrast to the cockroach-derived algorithm where robots stop randomly and the
environment is measured frequently. Our arena is different because the luminance under the
light source is graduated, which is why we divided that area into four zones. The luminance
under the shaded shelters is not graduated. Furthermore, self-enhanced aggregation observed
in [15] was achieved by transmitting information between the robots in form of their ID
numbers. No sort of signal-transfer is used for the BEECLUST algorithm (not a single bit is
communicated from one robot to another robot).

There exist several other algorithms that allow coordination of autonomous agents without
direct communication. Firstly, there is a variety of flocking algorithms [31,16], where geomet-
rical rules are used by swarm members to position themselves relatively to their neighbours.
In contrast to our algorithm, the flocking task poses very high computational demands and
requires very sophisticated sensorial abilities [28] and preceding studies of the same group
propose a communication-less algorithm, which enables a swarm of autonomous robots to
regulate task performance and to develop task specialization. This topic is not addressed by
our algorithm, which focuses on collective decision making in an aggregation scenario. And
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finally, there is a variety of “stigmergic” algorithms [4,17], where direct communication is
replaced by indirect communication, as agents alter the environment by performing a task.
In our algorithm, the robots do not alter the environment, except of positioning themselves in
the arena. We do not interpret such self-positioning as stigmergic behaviour, because then any
form of motion behaviour has to be interpreted as stigmergic” behaviour, what would remove
the significance from the stigmergic concept. In addition to that, stigmergic algorithms are
not necessarily swarm algorithms, as was demonstrated in [4], which show that stigmergic
puck-sorting can be achieved also with one acting robot alone. Our algorithm works only
with several robots, whereby the optimal swarm density is approx. 10 Jasmine robots per m2.

Summing up, we show results from experiments with a real robotic swarm which include
all the noise and interferences that would be hard to properly simulate. Besides that, our
algorithm is exceedingly simple which allows easy portability to other robotic swarms.

5 Conclusion

The observed collective decisions were an emergent property achieved by the whole group
of robots, not by single individuals. No adaptation took place within the individual robot.
Nevertheless, we observed a highly adaptive collective behaviour, achieved by the robot-
to-robot social network, which was knotted by the weak ties of robot-to-robot collisions.
Nevertheless, these weak interactions led to a spatially distributed social network among the
robots that allowed them to converge to collective decisions.

Although our algorithm is purely based on undirected motion and has to deal with impre-
cise sensor and actuator devices, the final results showed a high efficiency of the algorithm:
In the phases with two lights in the arena (phase 2 and 3), the average number of aggregated
robots varied between 10 and 11 among the repetitions. This means that approx. 70% of
all robots successfully converged to a solution. The remaining 4–5 free moving robots per-
formed an important role in the dynamic environment. Similar to “scouts”, as they are known
from social insects’ foraging, these robots constantly explored the arena and started to form
new aggregations as soon as light conditions changed. In situations with just one dimmed
light available, the dimmed light was “exploited” more precisely (robots aggregated closer
to the light source). In these situations, many scouts were searching for other light sources.
When we turned on the second (bright) light, this environmental change was detected by
the swarm almost immediately and the swarm reacted quickly by recruiting a majority of
the robots to the bright light source. In those situations where a bright light was present
in the arena, the number of “scouts” was small and more robots exploited the bright light.
Such features, like emergent dynamic allocation of scouts and recruits, are usually referred
as “swarm intelligent” in the biological examples of social insect foraging.

The results that we gained from our observations reported in this article make us confident
that our very simple algorithm covers enough complexity to generate much more collective
behaviours and functions. Investing into this algorithm seems to be valuable, because the
algorithm impressed us with its accuracy and with its robustness. Although many robots did
not move straight and although there was sensorial heterogeneity, the robot swarm always
behaved predictable (on the swarm level) and precise. Simultaneously, the experiments with
the environmental fluctuations showed that the swarm behaviour was flexible and adaptive.
So far we do not know any other control algorithm published and analysed, that achieves
this level of accuracy with such little computational efforts, with almost no communication
bandwidth and with such little individual accuracy concerning motion and sensory systems
in a dynamic and complex environment like the one we used for our studies presented here.
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